Грамотный расчет теплопотерь дома и как и снизить

Как уменьшить теплопотери и экономить на отоплении

Экономия на энергоресурсах приобретает все большую значимость. И не только потому, что частные дома в последнее время все больше по площади, следовательно, и по теплопотерям. Главная причина в том, что на правительственном уровне нам обещают цены на энергоносители в скором будущем такие же, как в Европе.

А там занимаются экономией энергии весьма тщательно… Вводят законы направленные на энергосбережение, например предусматривающие строительство лишь энергоэкономичных домов и применение только конденсационных котлов (с вторичным теплообменником)…

Следовательно, в нашем климате вопрос энергосбережения должен стать еще более существенным, чем в странах запада.
Отсюда задача строить действительно энергосберегающий дом уже сейчас. Или добиваться таких качеств путем проведения ремонта.
Что нужно сделать для лучшей экономии тепла?

Как нормативы регламентируют теплопотери

Окна, двери, крыша, стены…. — все это ограждающие конструкции. У каждой из них свое сопротивление теплопередаче. Через каждую проходит какое-то количество тепла, которое зависит от указанного сопротивления, площади, разности температур и др.

Нормативом регламентируется для каждой ограждающих конструкций дома определенное сопротивление теплопередаче, в зависимости от количества градусо-суток, т.е. от региона проживания.

Также указываются максимальные возможные удельные теплопотери за отопительный сезон.

При этом в нормативе указывается, что сопротивление теплопередаче отдельных ограждающих конструкций могут быть ниже требований, если это целесообразно экономически, но суммарные теплопотери при этом не должны превышать нормативных.

В каждом конкретном случае предлагается проверять экономическую целесообразность тех или иных решений по теплосбережению, и отыскивать наиболее экономичное решение в зависимости от региона, цен на топливо и др.

Теплые стены целесообразно не утеплять

Действительно, зачастую доутеплять стены, которые «теплые» сами по себе, до нормативных требований, весьма затратно. Например, однослойная стена из поризованной керамики может иметь сопротивление теплопередаче немногим меньше чем нормативное значение.

Доутепление слоем минеральной ваты толщиной 3 — 5 см потребует больших дополнительных затрат, уменьшит надежность, долговечность конструкции. Чем лучше однослойные стены из теплых материалов

Оказывается, что экономически выгодней в данном проекте достичь требований по энергопотерям оптимизацией вентиляции, и применением энергосберегающих стекол, например. Но на практике подобное решение игнорируют, и эту экономическую выгоду упускают. Почему?

Простые проекты

Проекты сейчас в основном делаются исходя из требований нормативов относительно сопротивления теплопередаче ограждающих конструкций. Такой проект сделать намного проще. Усложнять расчеты энергопотерями, которые происходят по разным причинам, многие не хотят, или не могут. Поэтому энергосберегающие мероприятия и экономическая целесообразность в полной мере не просчитываются.

Какие мероприятия по теплосбережению могут быть разработанными в проектах, и реализовываться на практике?

Меры по снижению теплопотерь

  • Увеличивать сопротивление теплопередаче конструкций. В первую очередь тех, которые выгодней утеплять. Например, если стены достаточно теплые, то дешевле с большим эффектом увеличить толщину утеплителя в кровле над мансардой, в полу, а также установить более энергосберегающие окна. Но у конкретного проекта, могут быть свои решения.
  • Рассмотреть возможность строительства одноэтажного дома вместо двухэтажного. У двухэтажных на 10% больше потерь тепла при прочих равных обстоятельствах.
  • Упростить форму здания, приблизить ее к правильному четырехугольнику, убрать навесные элементы, контактирующие с несущими ограждающими конструкциями. «Лишние » углы дают увеличение утечек тепла от 3%.
  • Применять «теплые» окна, защищенные снаружи рольставнями.
  • Предусмотреть современную автоматизированную вентиляционную систему с фиксированным количеством воздуха, и рекуперацией тепла.
  • Применить рекуперацию тепла канализационных стоков.
  • Запроектировать пристройку к наружным стенам других неотапливаемых помещений, — летней кухни, веранды, закрытой террасы, гаража, мастерской, склада…
  • Стремиться запроектировать максимальную площадь остекления с южной стороны. Чтобы нивелировать нагрев летом, предусмотреть дополнительные меры, например, затеняющий сад с опадающей листвой. жалюзи, карнизы.
  • Применить эффективные приемы отопления, — теплый пол с конденсационным котлом, программируемое регулирование температуры для каждой комнаты. Снижение температуры на 2 градуса экономит не менее 5% энергоносителя.

Важность вентиляции

Существенные теплопотери могут быть не только за счет непосредственной передачи тепла от предмета к предмету. Но и за счет выноса теплого воздуха вместе с вентиляцией, потерей энергии со сливаемой горячей водой, вследствие ухода лучевой энергии через стекла, обдувом (усиленным теплообменом) ветром…

Если ограждающие конструкции будут иметь требуемое сопротивление теплопередаче, то все равно, дом может терять энергию в гораздо большем количестве, чем это указано в нормативе.

Выход только в комплексном подходе к теплосбережению.
Вопросу вентиляции помещения нужно придать столько же важности, как и вопросу утепления.

Подбор проекта и комплексное теплосбережение

Стремление достичь значительного теплосбережения для всего здания с помощью полного устранения одной части теплопотерь, при игнорировании других, приведет лишь к повышенным затратам на такие мероприятия. Например, наращивание толщины утеплителя на стене, в кровле, под полом, свыше обычных нормативных значений, значительно дороже.

Важно найти такой проект дома, где вопрос энергосбережения рассматривался бы в комплексе, а не только как утепление ограждающих конструкций.

Подбору такого проекта и соответствующих специалистов-строителей нужно уделить максимум усилий.

Воздухообменом может удаляться половина генерируемого в доме тепла. Вопрос не только в наличии сквозняков, но и главным образом, — в неконтролируемой вытяжной вентиляции.

Зимой естественная тяга значительно увеличивается за счет разницы температур, этому значительно может способствовать ветер. Решить вопрос можно только созданием регулируемой вентиляции, при достаточно низкой воздухопроницаемости всех конструкций. Подробней о вопросе создания вентиляции в доме

Утепление и энергоэффективность дома. Вопросы целесообразности.

Запись дневника создана пользователем Smart2305, 26.01.13
Просмотров: 18.137, Комментариев: 10

Как утеплить дом – это один из главных вопросов в строительстве.
Думать о нем необходимо при проектировании будущего дома.

Прежде всего необходимы исходные данные:
1. Площадь планируемого дома
2. Площадь и тип окон
3. Площадь фасадов
4. Площадь фундамента и площадь поверхностей цокольного этажа.
5. Высота потолков или внутренний объем дома.
6. Тип вентиляции в доме (естественная, принудительная).

За основу возьмем дом площадью 170 м2. с высотой потолков 3 м., площадью остекления 30 м2 и площадью ограждающих конструкций 400 м2.

После получения исходных данных, можно приступать.

Основные тепловые потери в доме я разбил на 3 категории:
1. Потери через окна.
2. Потери через ограждающие конструкции (крышу, стены, фундамент).
3. Потери через вентиляцию.

При проектировании дома, необходимо стремится, чтобы эти три категории тепловых потерь были ориентировочно равны друг другу, т. е. количество потерь тепловой мощности было равно по каждой категории – 33,3%.
Почему так?
В этом случае мы достигнем баланса тепловых потерь и дальнейшее уменьшение тепловых потерь по любой из категорий будет связано с большими затратами, не приводящими к заметному эффекту.

За основу возьмем потери через окна, т. к. эта категория тепловых потерь самая сложная. Потери через окна очень сложно уменьшить. Разница между различными современными стеклопакетами довольно несущественна и колеблется от 70 до 100 Вт/м2 при дельте (разницы между внутренним и наружним воздухом) 50 гр.

Таким образом зная площадь окон мы сможем найти максимальные тепловые потери через них.
Допустим площадь окон равняется 30 м2, тогда при среднем стеклопакете (потери 100 Вт/м2) тепловые потери через окна составят 3000 Вт.

Теперь мы знаем к чему надо стремиться при проектировании теплоизоляции ограждающих конструкций дома и вентиляции. К потерям 3000 Вт. И если мы с этой задачей справимся, то получим максимальные теплопотери дома – 3000*3 = 9000 Вт и построим максимально сбалансированный дом.

Тепловые потери через ограждающие конструкции равняются сумме потерь через фундамент, стены, крышу.
Для простоты расчета и сравнения нам необходимо определить потери тепла через 1м2 каждой из ограждающих конструкций и умножить на соответствующую площадь конструкции.
В технической документации часто говорят о параметре – сопротивление теплопередаче. Измеряется в °С·м2/ Вт.
Обозначает количество квадратных метров конструкции через которую теряется 1 Вт мощности при разнице между внутренней и наружней температурой в 1 гр.
По современным стандартам сопротивление теплопередаче через стены не должно быть меньше 3,13 °С·м2/ Вт, что соответствует теплопотерям при дельте в 50 гр.
50/3.13=15,97 Вт/м2.
Обратите внимание насколько требуемые потери через стены, меньше чем потери через окна.
Определить максимальные теплопотери нужные нам мы можем разделив тепловые потери через окна на площадь конструкций. В нашем случае 3000 Вт/400 м2 = 7,5 Вт/м2.
Ну и определим требуемое сопротивление теплопередаче 50/7,5 = 6,67 °С·м2/ Вт.
Исходя из этого значения мы должны выбирать толщину утеплителя ограждающих конструкций.
Сейчас уже не удивительно, что в поисках баланса тепловых потерь, крупные застройщики многоэтажных зданий применяют утеплитель в 150 мм толщиной в сочетании со стеной из пеноблока толщиной 250 мм.
Возможно вам в вашем проекте не удастся сравнять тепловые потери через окна с тепловыми потерями через ограждающие конструкции, но к этому необходимо стремиться.

Свежий воздух необходим дому и его хозяевам не меньше чем чистая вода и тепло, поэтому потери через вентиляцию составляют существенную часть от всех тепловых потерь в доме.
По современным стандартам необходимо чтобы воздух в жилом помещении сменялся хотя бы 1 раз в час, т.е. кол-во сменяемого воздуха должно равняться внутреннему объему дома. Объем мы посчитаем умножив площадь помещений на высоту потолков.
В нашем случае дому необходимо 500 м3/час свежего уличного воздуха.
Тепловые потери с вытесняемым воздухом при дельте 50 гр. можем найти по формуле:
16,7*V, где V-кол-во м3 воздуха в час.
Если мы обеспечим приток холодного воздуха по необходимым нормам и будем вытеснять таким образом теплый воздух из помещения, то мы получим тепловые потери равные 16,7*500=8350 Вт, что никак не укладывается в наш баланс.
У нас остается 2 выхода. Либо уменьшить воздухообмен, таким образом не вписываясь в современные нормативы и забыть о свежем и чистом воздухе, либо как-то уменьшить тепловые потери.
Современные системы принудительной приточно-вытяжной вентиляции оснащаются рекуператором (устройством, с помощью которого тепло уходящего на улицу воздуха передается входящему), таким образом повышается эффективность вентиляции.
КПД у рекуператоров составляет 70-80%.
Таким образом установив в наш дом систему принудительно приточно-вытяжной вентиляции с рекуператором нам удастся сократить потери тепла до 2500 Вт.

Выводы.
Расчет баланса тепловых потерь очень важен для строительства энергоэффективного современного дома.
Тепловые потери в доме определяет в основном площадь остекления.
Без системы принудительной приточно-вытяжной вентиляции с рекуператором невозможно достичь баланса тепловых потерь в доме.

Теплопотери дома, расчет теплопотерь.

На сегодняшний день теплосбережение является важным параметром, который учитывается при сооружении жилого или офисного помещения. В соответствии со СНиП 23-02-2003 «Тепловая защита зданий», сопротивление теплоотдаче рассчитывается по одному из двух альтернативных подходов:

Для расчета систем отопления дома, вы можете воспользоваться калькулятором расчета отопления, теплопотерь дома.

Предписывающий подход – это нормы, предъявляемые к отдельным элементам теплозащиты здания: наружным стенам, полам над не отапливаемым пространствами, покрытиям и чердачным перекрытиям, окнам, входным дверям и т.д.

Потребительский подход (сопротивление теплопередаче может быть снижено по отношению к предписывающему уровню при условии, что проектный удельный расход тепловой энергии на отопление помещения ниже нормативного).

  • Перепад между температурами воздуха внутри помещения и снаружи не должен превышать определенных допустимых значений. Максимальные допустимые значения перепада температур для наружной стены 4°С. для покрытия и чердачного перекрытия 3°С и для перекрытия над подвалами и подпольями 2°С.
  • Температура на внутренней поверхности ограждения должна быть выше температуры точки росы.

К примеру: для Москвы и московской области необходимое теплотехническое сопротивление стены по потребительскому подходу составляет 1.97 °С· м 2 /Вт, а по предписывающему подходу:

  • для дома постоянного проживания 3.13 °С· м 2 / Вт.
  • для административных и прочих общественных зданий, в том числе сооружений сезонного проживания 2.55 °С· м 2 / Вт.

По этой причине, выбирая котел либо другие нагревательные приборы исключительно по указанным в их технической документации параметрам. Вы должны спросить у себя, построен ли ваш дом со строгим учетом требований СНиП 23-02-2003.

Следовательно, для правильного выбора мощности котла отопления либо нагревательных приборов, необходимо рассчитать реальные теплопотери вашего дома. Как правило, жилой дом теряет тепло через стены, крышу, окна, землю, так же существенные потери тепла могут приходиться на вентиляцию.

Теплопотери в основном зависят от:

  • разницы температур в доме и на улице (чем выше разница, тем выше потери).
  • теплозащитных характеристик стен, окон, перекрытий, покрытий.

Стены, окна, перекрытия, имеют определенное сопротивление утечкам тепла, теплозащитные свойства материалов оценивают величиной, которая называется сопротивлением теплопередачи.

Сопротивление теплопередачи покажет, какое количество тепла просочится через квадратный метр конструкции при заданном перепаде температур. Можно сформулировать этот вопрос по другому: какой перепад температур будет возникать при прохождении определенного количества тепла через квадратный метр ограждений.

R = ΔT/q.

  • q – это количество тепла, которое уходит через квадратный метр поверхности стены или окна. Это количество тепла измеряют в ваттах на квадратный метр (Вт/ м 2 );
  • ΔT – это разница между температурой на улице и в комнате (°С);
  • R – это сопротивление теплопередачи (°С/ Вт/ м 2 или °С· м 2 / Вт).

В случаях, когда речь идет о многослойной конструкции, то сопротивление слоев просто суммируется. К примеру, сопротивление стены из дерева, которая обложена кирпичом, является суммой трех сопротивлений: кирпичной и деревянной стенки и воздушной прослойки между ними:

R(сумм.)= R(дерев.) + R(воз.) + R(кирп.)

Распределение температуры и пограничные слои воздуха при передаче тепла через стену.

Расчет теплопотерь выполняется для самого холодного периода года периода, коим является самая морозная и ветреная неделя в году. В строительной литературе, зачастую, указывают тепловое сопротивление материалов исходя из данного условия и климатического района (либо наружной температуры), где находится ваш дом.

Таблица сопротивления теплопередачи различных материалов

Материал и толщина стены

Сопротивление теплопередаче Rm.

Кирпичная стена
толщ. в 3 кирп. (79 сантиметров)
толщ. в 2.5 кирп. (67 сантиметров)
толщ. в 2 кирп. (54 сантиметров)
толщ. в 1 кирп. (25 сантиметров)

Сруб из бревна Ø 25
Ø 20

Толщ. 20 сантиметров
Толщ. 10 сантиметров

Каркасная стена (доска +
минвата + доска) 20 сантиметров

Стена из пенобетона 20 сантиметров
30 см

Штукатурка по кирпичу, бетону.
пенобетону (2-3 см)

Потолочное (чердачное) перекрытие

Двойные деревянные двери

Таблица тепловых потерь окон различных конструкций при ΔT = 50 °С (Тнар. = –30 °С. Твнутр. = 20 °С.)

Тип окна

RT

q. Вт/м2

Q. Вт

Обычное окно с двойными рамами

Стеклопакет (толщина стекла 4 мм)

4-6-4-6-4
4-Ar6-4-Ar6-4
4-6-4-6-4К
4-Ar6-4-Ar6-4К
4-8-4-8-4
4-Ar8-4-Ar8-4
4-8-4-8-4К
4-Ar8-4-Ar8-4К
4-10-4-10-4
4-Ar10-4-Ar10-4
4-10-4-10-4К
4-Ar10-4-Ar10-4К
4-12-4-12-4
4-Ar12-4-Ar12-4
4-12-4-12-4К
4-Ar12-4-Ar12-4К
4-16-4-16-4
4-Ar16-4-Ar16-4
4-16-4-16-4К
4-Ar16-4-Ar16-4К

Как видно из вышеуказанной таблицы, современные стеклопакеты дают возможность сократить теплопотери окна почти в 2 раза. К примеру, для 10 окон размером 1.0 м х 1.6 м экономия может достигать в месяц до 720 киловатт-часов.

Для правильного выбора материалов и толщины стен применим эти сведения к конкретному примеру.

В расчете тепловых потерь на один м 2 участвуют две величины:

  • перепад температур ΔT.
  • сопротивления теплопередаче R.

Допустим температура в помещении будет составлять 20 °С. а наружная температура будет равной –30 °С. В таком случае перепад температур ΔT будет равен 50 °С. Стены изготовлены из бруса толщиной 20 сантиметров, тогда R= 0.806 °С· м 2 / Вт.

Тепловые потери будут составлять 50 / 0.806 = 62 (Вт/ м 2 ).

Для упрощения расчетов теплопотерь в строительных справочниках указывают теплопотери различного вида стен, перекрытий и т.д. для некоторых значений зимней температуры воздуха. Как правило, приводятся различные цифры для угловых помещений (там влияет завихрение воздуха, отекающего дом) и неугловых, а также учитывается разница в температур для помещений первого и верхнего этажа.

Таблица удельных теплопотерь элементов ограждения здания (на 1 м 2 по внутреннему контуру стен) в зависимости от средней температуры самой холодной недели в году.

Характеристика
ограждения

Наружная
температура.
°С

Теплопотери. Вт

1 этаж

2 этаж

Угловая
комната

Неугл.
комната

Угловая
комната

Неугл.
комната

Стена в 2.5 кирпича (67 см)
с внутр. штукатуркой

Стена в 2 кирпича (54 см)
с внутр. штукатуркой

Рубленая стена (25 см)
с внутр. обшивкой

Рубленая стена (20 см)
с внутр. обшивкой

Стена из бруса (18 см)
с внутр. обшивкой

Стена из бруса (10 см)
с внутр. обшивкой

Каркасная стена (20 см)
с керамзитовымзаполнением

Стена из пенобетона (20 см)
с внутр. штукатуркой

Примечание. В случае когда за стеной находится наружное неотапливаемое помещение (сени, остекленная веранда и т.п.), то потери тепла через нее будут составлять 70% от расчетных, а если за этим неотапливаемым помещением находится еще одно наружное помещение то потери тепла будут составлять 40% от расчетного значения.

Таблица удельных теплопотерь элементов ограждения здания (на 1 м 2 по внутреннему контуру) в зависимости от средней температуры самой холодной недели в году.

Характеристика ограждения

Наружная
температура. °С

Теплопотери.
кВт

Окно с двойным остеклением

Сплошные деревянные двери (двойные)

Деревянные полы над подвалом

Далее давайте разберем пример расчета тепловых потерь 2 различных комнат одной площади при помощи таблиц.

Пример 1.

Угловая комната (1 этаж)

  • 1 этаж.
  • площадь комнаты – 16 м 2 (5х3.2).
  • высота потолка – 2.75 м.
  • наружных стен – две.
  • материал и толщина наружных стен – брус толщиной 18 сантиметров обшит гипсокартонном и оклеен обоями.
  • окна – два (высота 1.6 м. ширина 1.0 м) с двойным остеклением.
  • полы – деревянные утепленные. снизу подвал.
  • выше чердачное перекрытие.
  • расчетная наружная температура –30 °С.
  • требуемая температура в комнате +20 °С.

Далее выполняем расчет площади теплоотдающих поверхностей.

  • Площадь наружных стен за вычетом окон: Sстен(5+3.2)х2.7-2х1.0х1.6 = 18.94 м 2 .
  • Площадь окон: Sокон = 2х1.0х1.6 = 3.2 м 2
  • Площадь пола: Sпола = 5х3.2 = 16 м 2
  • Площадь потолка: Sпотолка = 5х3.2 = 16 м 2

Площадь внутренних перегородок в расчете не участвует, так как по обе стороны перегородки температура одинакова, следовательно через перегородки тепло не уходит.

Теперь Выполним расчет теплопотери каждой из поверхностей:

  • Qстен = 18.94х89 = 1686 Вт.
  • Qокон = 3.2х135 = 432 Вт.
  • Qпола = 16х26 = 416 Вт.
  • Qпотолка = 16х35 = 560 Вт.

Суммарные теплопотери комнаты будут составлять: Qсуммарные = 3094 Вт.

Следует учитывать, что через стены улетучивается тепла куда больше чем через окна, полы и потолок.

Пример 2

Комната под крышей (мансарда)

  • этаж верхний.
  • площадь 16 м 2 (3.8х4.2).
  • высота потолка 2.4 м.
  • наружные стены; два ската крыши (шифер, сплошная обрешетка. 10 саниметров минваты, вагонка). фронтоны (брус толщиной 10 саниметров обшитый вагонкой) и боковые перегородки (каркасная стена с керамзитовым заполнением 10 саниметров).
  • окна – 4 (по два на каждом фронтоне), высотой 1.6 м и шириной 1.0 м с двойным остеклением.
  • расчетная наружная температура –30°С.
  • требуемая температура в комнате +20°С.

Далее рассчитываем площади теплоотдающих поверхностей.

  • Площадь торцевых наружных стен за вычетом окон: Sторц.стен = 2х(2.4х3.8-0.9х0.6-2х1.6х0.8) = 12 м 2
  • Площадь скатов крыши, ограничивающих комнату: Sскатов.стен = 2х1.0х4.2 = 8.4 м 2
  • Площадь боковых перегородок: Sбок.перегор = 2х1.5х4.2 = 12.6 м 2
  • Площадь окон: Sокон = 4х1.6х1.0 = 6.4 м 2
  • Площадь потолка: Sпотолка = 2.6х4.2 = 10.92 м 2

Далее рассчитаем тепловые потери этих поверхностей, при этом необходимо учесть, что через пол в данном случае тепло не будет уходить, так как внизу расположено теплое помещение. Теплопотери для стен рассчитываем как для угловых помещений, а для потолка и боковых перегородок вводим 70-процентный коэффициент, так как за ними располагаются неотапливаемые помещения.

  • Qторц.стен = 12х89 = 1068 Вт.
  • Qскатов.стен = 8.4х142 = 1193 Вт.
  • Qбок.перегор = 12.6х126х0.7 = 1111 Вт.
  • Qокон = 6.4х135 = 864 Вт.
  • Qпотолка = 10.92х35х0.7 = 268 Вт.

Суммарные теплопотери комнаты составят: Qсуммарные = 4504 Вт.

Как мы видим, теплая комната 1 этажа теряет (либо потребляет) значительно меньше тепла, чем мансардная комната с тонкими стенками и большой площадью остекления.

Чтобы данное помещение сделать пригодным для зимнего проживания, необходимо в первую очередь утеплять стены, боковые перегородки и окна.

Любая ограждающая поверхность может быть представлена в виде многослойной стены, каждый слой которой имеет собственное тепловое сопротивление и собственное сопротивление прохождению воздуха. Суммировав тепловое сопротивление всех слоев, мы получим тепловое сопротивление всей стены. Также ели просуммировать сопротивление прохождению воздуха всех слоев, можно понять, как дышит стена. Самая лучшая стена из бруса должна быть эквивалентна стене из бруса толщиной 15 – 20 антиметров. Приведенная далее таблица поможет в этом.

Таблица сопротивления теплопередаче и прохождению воздуха различных материалов ΔT=40 °С (Тнар.=–20 °С. Твнутр.=20 °С.)


Слой стены

Толщина
слоя
стены

Сопротивление
теплопередаче слоя стены

Сопротивл.
Воздухопро­
ницаемости
эквивалентно
брусовой стене
толщиной
(см)

Ro.

Эквивалент
кирпичной
кладке
толщиной
(см)

Кирпичная кладка из обычного
глиняного кирпича толщиной:

12 сантиметров
25 сантиметров
50 сантиметров
75 сантиметров

Кладка из керамзитобетонных блоков
толщиной 39 см с плотностью:

1000 кг / м 3
1400 кг / м 3
1800 кг / м 3

Пено- газобетон толщиной 30 см
плотностью:

300 кг / м 3
500 кг / м 3
800 кг / м 3

Брусовал стена толщиной (сосна)

10 сантиметров
15 сантиметров
20 сантиметров

Для полной картины теплопотерь всего помещения нужно учитывать

  1. Потери тепла через контакт фундамента с мерзлым грунтом, как правило принимают 15% от потерь тепла через стены первого этажа (с учетом сложности расчета).
  2. Потери тепла, которые связаны с вентиляцией. Данные потери рассчитываются с учетом строительных норм (СНиП). Для жилого дома требуется около одного воздухообмена в час, то есть за это время необходимо подать тот же объём свежего воздуха. Таким образом, потери которые связаны с вентиляцией будут составлять немного меньше чем сумма теплопотерь приходящиеся на ограждающие конструкции. Выходит, что теплопотери через стены и остекление составляет только 40%, а теплопотери на вентиляцию 50%. В европейских нормах вентиляции и утепления стен, соотношение теплопотерь составляют 30% и 60%.
  3. Если стена «дышит», как стена из бруса или бревна толщиной 15 – 20 сантиметров то происходит возврат тепла. Это позволяет снизить тепловые потери на 30%. поэтому полученную при расчете величину теплового сопротивления стены необходимо умножить на 1.3 (или соответственно уменьшить теплопотери).

Суммировав все теплопотери дома, Вы сможете понять какой мощности котел и отопительные приборы необходимы для комфортного обогрева дома в самые холодные и ветряные дни. Также, подобные расчеты покажут, где «слабое звено» и как его исключить с помощью дополнительной изоляции.

Выполнить расчет расхода тепла можно и по укрупненным показателям. Так, в 1-2 этажных не очень утепленных домах при наружной температуре –25 °С необходимо 213 Вт на 1 м 2 общей площади, а при –30 °С – 230 Вт. Для хорошо утепленных домов – этот показатель будет составлять: при –25 °С – 173 Вт на м 2 общей площади, а при –30 °С – 177 Вт.

Как правильно провести расчет теплопотерь любого здания – пошаговая инструкция

Первым шагом при строительстве любого здания становится его проектирование. Это не только закладка необходимых коммуникаций и планирование строительно-монтажных работ, но и расчет теплопотерь для установки оптимального числа энергоносителей. Теплопотери дома – это количество тепла (в Ваттах), покидающее помещение за определенное время. Если пренебречь вычислениями, то в доме будет либо жарко, либо холодно, т. е. проживание станет дискомфортным.

Подсчет теплопотерь необходимо произвести на начальном этапе проектирования всех коммуникативных систем здания (вентиляции, отопления, воздушной отопительной системы). Для этого в расчет берут следующие параметры:

  • температура воздуха в зимний период (в самую холодную неделю);
  • температура воздуха в помещении подобной конструкции (норматив для жилого здания +20°С, ± 2);
  • конструкционные особенности перекрытий, пола, всех стен;
  • площадь помещения;
  • количество окон;
  • температурное сопротивление ограждающих конструкций.

Формула температурного равновесия выглядит так: Хс + Хп + Хк + Хо = Упр + Уср + Улюд + Уос.

  • Хс – потеря тепла через стену;
  • Хп – потеря тепла через пол (без дополнительного покрытия);
  • Хк – через крышу;
  • Хо – через все имеющиеся окна;
  • Упр – поступление тепла от имеющихся электроприборов;
  • Уср – от солнечной энергии;
  • Улюд – от присутствия/проживания людей;
  • Уос – поступление тепла от отопления (центрального, печного и т. д.).

Так выглядит теория, но на практике получить точные данные по некоторым параметрам не всегда возможно. Поэтому все теплопоступления заменяют показателями от отопления в разное время года.

Первым этапом вычисление станет получение начальных данных по представленным нормативам. Большинство берут из технической документации. Потери тепла происходят через перекрытия, ограждающие конструкции, окна, вентиляцию, крышу, трубопровод. Существуют и дополнительные теплопотери, но они являются незначительными и перед проектированием не учитываются. Термическое сопротивление для всех конструкций рассчитывается по формуле:

Rст =1/ αв +Σ(δі / λі)+1/ αн

  • αв – коэффициент теплоотдачи внутренней поверхности ограждения, Вт /м2 ·о С;
  • λі и δі – коэффициент теплопроводности для материала каждого слоя стены и толщина этого слоя в м;
  • αн – коэффициент теплоотдачи внешней поверхности ограждения, Вт /м2 ·о с.

Все коэффициенты под параметром α являются различными для перекрытий и стен. Их показатели берут из технических нормативов.

Важно помнить, что при подсчетах учитывают все слои конструкций (каркасное строение выложенное кирпичом, наличие дополнительного утеплителя, сайдинга и прочее).

На стеновые теплопотери имеют большое значение материал и конструкция. Вычисления производят по следующей формуле:

Коэффициент под параметром n называют поправочным и имеет значение:

  • при штучном материале n=1;
  • при чердачных перекрытиях n=0,9;
  • для подвальных n=0,75.

Примером служат расчеты теплопотерь для стены из кирпича шириной 51 см, утепленной минеральной ватой толщиной 10 см с финишным покрытием 3 см. Дополнительные данные:

  • температура воздуха снаружи -20°С;
  • температура внутри помещения +22°С;
  • внешняя одна стена южная, длина – 4 м, высота – 3 м;
  • дверей нет.

Считают в следующей последовательности:

Количество шагов

Название расчетов

Вычисления

Термическое сопротивление ограждающей конструкции

Rст =1/ 23 +0,51/0,58+0,1/0,064+0,03/0,76+ 1/ 8,6 = 2,64 м2 ºС/Вт

Числа 100 и 10 в третьем шаге являются дополнительными параметрами потерь.

Рассчитать потерю тепла через имеющееся окно гораздо проще. Параметр термического сопротивления присутствует в паспортных данных. Подсчет теплопотерь вычисляют так же, как для стен.

Дополнительно учитывают материал, применяемый в оконном профиле (дерево, пластик, 3- или 5-камерные).

За перекрытия принимают напольные и крышу – для многоквартирных домов. При этом на первом этаже учет ведется только подвального перекрытия, на последнем – только потолочного. Вызвано это тем обстоятельством, что теплопотери из одной квартиры к другой в многоэтажном здании незначительны.

Еще одним важным параметром учета являются неутепленные узлы, особенно в местах, где ограждающие конструкции примыкают к перекрытиям. Рассчитывают этот параметр в той же шаговой последовательности и по таким же формулам, как и для стен. При этом исключают дополнительные теплопотери. Показатель α для узлов перекрытий рассчитывают следующим образом: α вн =8,7 Вт/(м 2 ·К) α вн =6 Вт/(м2 ·К).

Температура в подвале и чердаке имеет условный показатель от 4 до 6°С.

В данном случае расчет производят в несколько этапов. Для начала пол разделяют на участки по 2 м. Первый прилегает непосредственно к внешней стене – он основной при учете коэффициента потерь, т. к. самый холодный. Далее участки доходят до середины помещения. Каждую зону вычисляют по своим показателям. А именно:

  • зона 1 – R1=2,15 (м2 °С/Вт);
  • зона 2 – R2=4,3 (м2 °С/Вт);
  • зона 3 – R3=8,6 (м2 °С/Вт).

В данной категории расчеты производят только для стен, примыкающих к улице, и окон. Изначально вычисления выражают в процентах, в дальнейшем переводят в коэффициенты. Существует 4 учитываемых показателя:

  • ветреность;
  • количество уличных дверей;
  • количество дверей внутри помещения;
  • ориентация (стороны света).

На практике процентный показатель следующий:

Показатель

Процент

Основная ориентация стен помещения на восток, северо-запад, север, северо-восток

Основная ориентация стен на юг, юго-восток, юго-запад, запад

Помещение имеет две наружные стены

Помещение имеет одну наружную стену

Наружная дверь в помещении одинарная

Наружная дверь двойная

Наружная дверь тройная

После расчета процентов их переводят в коэффициент β и подставляют в формулу расчета общих теплопотерь.

Если по задуманной планировке в доме будет смонтирована вентустановка или воздушное отопление, теплопотери имеют нулевой коэффициент. Расчет потерь производят при установке обычной вентиляционной шахты. В этом случае используют формулу: Q=0,337·V·Δt. Расшифровка:

  • объем комнаты – V (расчет в м³);
  • отличие температур внутри дома от внешней – Δt (расчет в градусах).

Сложив все произведенные вычисления, рассчитывают общие теплопотери в комнате.

Все измерения для частного дома выполняют на стадии проектирования. Вычисляют в несколько этапов:

  1. 1. Потери сквозь наружные стены.
  2. 2. Через оконные проемы.
  3. 3. Через двери.
  4. 4. Сквозь узлы и связанные с ними перекрытия.
  5. 5. Сквозь слои пола и напольного покрытия.
  6. 6. Складывают все показатели.
  7. 7. Добавляют параметры по вентиляции (10-360%).

Средние показатели для окон берут из «Строительных норм и правил II-3-79». Но при этом дополнительно учитывают вид стены, материал, конструктивные особенности помещения (угловое, многоэтажное и т. д.).

Для снижения и компенсации теплопотерь в деревянном доме устанавливают твердотопливные котлы. Мощность такого оборудования напрямую зависит от произведенных вычислений. Считать необходимо в измерительной системе “киловатт-часах за сутки”.

Рассчитать вручную самостоятельно теплопотери довольно сложно. Для этого существует множество программ и онлайн-калькуляторов. Но важно понимать принципы всех вычислений, их последовательность и дополнительные нюансы потери тепла в доме. Только так проектируется комфортное для проживания жилье, количество и необходимость утеплителя, системы отопления.

Расчёт теплопотерь частного дома с примерами

Чтобы ваш дом не оказался бездонной ямой для расходов на отопление, предлагаем изучить базовые направления теплотехнических изысканий и методологию расчётов.

Чтобы ваш дом не оказался бездонной ямой для расходов на отопление, предлагаем изучить базовые направления теплотехнических изысканий и методологию расчётов.

Без предварительного расчёта тепловой проницаемости и влагонакопления теряется вся суть жилищного строительства.

Физика теплотехнических процессов

Различные области физики имеют много схожего в описании явлений, которые ими изучаются. Так и в теплотехнике: принципы, описывающие термодинамические системы, наглядно перекликаются с основами электромагнетизма, гидродинамики и классической механики. В конце концов, речь идёт об описании одного и того же мира, поэтому не удивительно, что модели физических процессов характеризуются некоторыми общими чертами во многих областях исследований.

Суть тепловых явлений понять легко. Температура тела или степень его нагрева есть не что иное, как мера интенсивности колебаний элементарных частиц, из которых это тело состоит. Очевидно, что при столкновении двух частиц та, у которой энергетический уровень выше, будет передавать энергию частице с меньшей энергией, но никогда наоборот.

Однако это не единственный путь обмена энергией, передача возможна также посредством квантов теплового излучения. При этом базовый принцип обязательно сохраняется: квант, излученный менее нагретым атомом, не в состоянии передать энергию более горячей элементарной частице. Он попросту отражается от неё и либо пропадает бесследно, либо передаёт свою энергию другому атому с меньшей энергией.

Термодинамика хороша тем, что происходящие в ней процессы абсолютно наглядны и могут интерпретироваться под видом различных моделей. Главное — соблюдать базовые постулаты, такие как закон передачи энергии и термодинамического равновесия. Так что если ваше представление соответствует этим правилам, вы легко поймёте методику теплотехнических расчётов от и до.

Понятие сопротивления теплопередаче

Способность того или иного материала передавать тепло называется теплопроводностью. В общем случае она всегда выше, чем больше плотность вещества и чем лучше его структура приспособлена для передачи кинетических колебаний.

Величиной, обратно пропорциональной тепловой проводимости, является термическое сопротивление. У каждого материала это свойство принимает уникальные значения в зависимости от структуры, формы, а также ряда прочих факторов. Например, эффективность передачи тепла в толще материалов и в зоне их контакта с другими средами могут отличаться, особенно если между материалами есть хотя бы минимальная прослойка вещества в другом агрегатном состоянии. Количественно термическое сопротивление выражается как разница температур, разделённая на мощность теплового потока:

  • Rt — термическое сопротивление участка, К/Вт;
  • T2 — температура начала участка, К;
  • T1 — температура конца участка, К;
  • P — тепловой поток, Вт.

В контексте расчёта теплопотерь термическое сопротивление играет определяющую роль. Любая ограждающая конструкция может быть представлена как плоскопараллельная преграда на пути теплового потока. Её общее термическое сопротивление складывается из сопротивлений каждого слоя, при этом все перегородки складываются в пространственную конструкцию, являющуюся, собственно, зданием.

  • Rt — термическое сопротивление участка цепи, К/Вт;
  • l — длина участка тепловой цепи, м;
  • λ — коэффициент теплопроводности материала, Вт/(м·К);
  • S — площадь поперечного сечения участка, м2.

Факторы, влияющие на теплопотери

Тепловые процессы хорошо коррелируют с электротехническими: в роли напряжения выступает разница температур, тепловой поток можно рассматривать как силу тока, ну а для сопротивления даже своего термина придумывать не нужно. Также в полной степени справедливо и понятие наименьшего сопротивления, фигурирующего в теплотехнике как мостики холода.

Если рассматривать произвольный материал в разрезе, достаточно легко установить путь теплового потока как на микро-, так и на макроуровне. В качестве первой модели примем бетонную стену, в которой по технологической необходимости выполнены сквозные крепления стальными стержнями произвольного сечения. Сталь проводит тепло несколько лучше бетона, поэтому мы можем выделить три основных тепловых потока:

  • через толщу бетона
  • через стальные стержни
  • от стальных стержней к бетону

Модель последнего теплового потока наиболее занимательна. Поскольку стальной стержень прогревается быстрее, то ближе к наружной части стены будет наблюдаться разница температур двух материалов. Таким образом, сталь не только «перекачивает» тепло наружу сама по себе, она также увеличивает тепловую проводимость прилегающих к ней масс бетона.

В пористых средах тепловые процессы протекают похожим образом. Практически все строительные материалы состоят из разветвлённой паутины твёрдого вещества, пространство между которым заполнено воздухом.

Таким образом, основным проводником тепла служит твёрдый, плотный материал, но за счёт сложной структуры путь, по которому распространяется теплота, оказывается больше поперечного сечения. Таким образом, второй фактор, определяющий термическое сопротивление, это неоднородность каждого слоя и ограждающей конструкции в целом.

Третьим фактором, влияющим на теплопроводность, мы можем назвать накопление влаги в порах. Вода имеет термическое сопротивление в 20–25 раз ниже, чем у воздуха, таким образом, если она наполняет поры, в целом теплопроводность материала становится даже выше, чем если бы пор вообще не было. При замерзании воды ситуация становится ещё хуже: теплопроводность может возрасти до 80 раз. Источником влаги, как правило, служит комнатный воздух и атмосферные осадки. Соответственно, три основных метода борьбы с таким явлением — это наружная гидроизоляция стен, использование парозащиты и расчёт влагонакопления, который обязательно производится параллельно прогнозированию теплопотерь.

Дифференцированные схемы расчёта

Простейший способ установить размер тепловых потерь здания — суммировать значения теплового потока через конструкции, которыми это здание образовано. Такая методика полностью учитывает разницу в структуре различных материалов, а также специфику теплового потока сквозь них и в узлах примыкания одной плоскости к другой. Такой дихотомический подход сильно упрощает задачу, ведь разные ограждающие конструкции могут существенно отличаться в устройстве систем теплозащиты. Соответственно, при раздельном исследовании определить сумму теплопотерь проще, ведь для этого предусмотрены различные способы вычислений:

  • Для стен утечки теплоты количественно равны общей площади, умноженной на отношение разницы температур к тепловому сопротивлению. При этом обязательно берётся во внимание ориентация стен по сторонам света для учёта их нагрева в дневное время, а также продуваемость строительных конструкций.
  • Для перекрытий методика та же, но при этом учитывается наличие чердачного помещения и режим его эксплуатации. Также за комнатную температуру принимается значение на 3–5 °С выше, расчётная влажность тоже увеличена на 5–10%.
  • Теплопотери через пол рассчитывают зонально, описывая пояса по периметру здания. Связано это с тем, что температура грунта под полом выше у центра здания по сравнению с фундаментной частью.
  • Тепловой поток через остекление определяется паспортными данными окон, также нужно учитывать тип примыкания окон к стенам и глубину откосов.
  • Q —тепловые потери, Вт;
  • S — площадь стен, м2;
  • ΔT — разница температур внутри и снаружи помещения, ° С;
  • Rt — сопротивление теплопередаче, м2·°С/Вт.

Пример расчёта

Прежде чем перейти к демонстрационному примеру, ответим на последний вопрос: как правильно рассчитать интегральное термическое сопротивление сложных многослойных конструкций? Это, конечно, можно сделать вручную, благо, что в современном строительстве используется не так много типов несущих оснований и систем утепления. Однако учесть при этом наличие декоративной отделки, интерьерной и фасадной штукатурки, а также влияние всех переходных процессов и прочих факторов достаточно сложно, лучше воспользоваться автоматизированными вычислениями. Один из лучших сетевых ресурсов для таких задач — smartcalc.ru, который дополнительно составляет диаграмму смещения точки росы в зависимости от климатических условий.

Для примера возьмём произвольное здание, изучив описание которого читатель сможет судить о наборе исходных данных, необходимых для расчёта. Имеется одноэтажный дом правильной прямоугольной формы размерами 8,5х10 м и высотой потолков 3,1 м, расположенный в Ленинградской области.

В доме выполнен неутеплённый пол по грунту досками на лагах с воздушным зазором, высота пола на 0,15 м превышает отметку планирования грунта на участке. Материал стен — шлаковый монолит толщиной 42 см с внутренней цементно-известковой штукатуркой толщиной до 30 мм и наружной шлаково-цементной штукатуркой типа «шуба» толщиной до 50 мм. Общая площадь остекления — 9,5 м2, в качестве окон использован двухкамерный стеклопакет в теплосберегающем профиле с усреднённым термическим сопротивлением 0,32 м2·°С/Вт.

Перекрытие выполнено на деревянных балках: снизу оштукатурено по дранке, заполнено доменным шлаком и сверху укрыто глиняной стяжкой, над перекрытием — чердак холодного типа. Задача расчёта теплопотерь — формирование системы теплозащиты стен.

Первым делом определяются тепловые потери через пол. Поскольку их доля в общем оттоке тепла наименьшая, а также по причине большого числа переменных (плотность и тип грунта, глубина промерзания, массивность фундамента и т. д.), расчёт теплопотерь проводится по упрощённой методике с использованием приведённого сопротивления теплопередаче. По периметру здания, начиная от линии контакта с поверхностью земли, описывается четыре зоны — опоясывающих полосы шириной по 2 метра.

Для каждой из зон принимается собственное значение приведённого сопротивления теплопередаче. В нашем случае имеется три зоны площадью по 74, 26 и 1 м2. Пусть вас не смущает общая сумма площадей зон, которая больше площади здания на 16 м2, причина тому — двойной пересчёт пересекающихся полос первой зоны в углах, где теплопотери значительно выше по сравнению с участками вдоль стен. Применяя значения сопротивления теплопередаче в 2,1, 4,3 и 8,6 м2·°С/Вт для зон с первой по третью, мы определяем тепловой поток через каждую зону: 1,23, 0,21 и 0,05 кВт соответственно.

Используя данные о местности, а также материалы и толщину слоёв, которыми образованы стены, на упомянутом выше сервисе smartcalc.ru нужно заполнить соответствующие поля. По результатам расчёта сопротивление теплопередаче оказывается равным 1,13 м2·°С/Вт, а тепловой поток через стену — 18,48 Вт на каждом квадратном метре. При общей площади стен (за вычетом остекления) в 105,2 м2 общие теплопотери через стены составляют 1,95 кВт/ч. При этом потери тепла через окна составят 1,05 кВт.

Перекрытие и кровля

Расчёт теплопотерь через чердачное перекрытие также можно выполнить в онлайн-калькуляторе, выбрав нужный тип ограждающих конструкций. В результате сопротивление перекрытия теплопередаче составляет 0,66 м2·°С/Вт, а потери тепла — 31,6 Вт с квадратного метра, то есть 2,7 кВт со всей площади ограждающей конструкции.

Итого суммарные теплопотери согласно расчётам составляют 7,2 кВт·ч. При достаточно низком качестве строительных конструкций здания этот показатель очевидно сильно ниже реального. На самом деле такой расчёт идеализирован, в нём не учтены специальные коэффициенты, продуваемость, конвекционная составляющая теплообмена, потери через вентиляцию и входные двери.

В действительности, из-за некачественной установки окон, отсутствия защиты на примыкании кровли к мауэрлату и плохой гидроизоляции стен от фундамента реальные теплопотери могут быть в 2 или даже 3 раза больше расчётных. Тем не менее, даже базовые теплотехнические исследования помогают определиться, будут ли конструкции строящегося дома соответствовать санитарным нормам хотя бы в первом приближении.

Напоследок дадим одну важную рекомендацию: если вы действительно хотите получить полное представление о тепловой физике конкретного здания, необходимо использовать понимание описанных в этом обзоре принципов и специальную литературу. Например, очень хорошим подспорьем в этом деле может стать справочное пособие Елены Малявиной «Теплопотери здания», где весьма подробно объяснена специфика теплотехнических процессов, даны ссылки на необходимые нормативные документы, а также приведены примеры расчётов и вся необходимая справочная информация.опубликовано econet.ru

Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта здесь.

Понравилась статья? Напишите свое мнение в комментариях.
Подпишитесь на наш ФБ:

Расчёт теплопотерь дома

Из статьи Теплопотери теперь мы знаем, что такое теплопотери. А как правильно посчитать теплопотери при проектировании отопления? Сколько секций радиатора необходимо установить в помещение?

Теплопотери через ограждающие конструкции складываются из теплопотерь через отдельные ограждения или части из площади. Теплопотери через внутренние ограждения в прилегающие помещения, имеющие пониженную температуру, допустимо не учитывать при разности температур не более 3С.

Зная площадь стен, окон, дверей, пола и потолка, а также их конструкцию, мы можем посчитать теплопотери через каждый элемент. Сложив результат получим общие теплопотери помещения.

Для примера рассчитаем теплопотери кухни в коттедже:

Кухня имеет площадь 15,1м2. Но нас интересует площадь ограждающих конструкций.

Для расчёта примем, что стена кухни с большим окном находится с северной стороны.

В расчётах допускается округлять значения до десятков Вт.

Площадь северной стены: (Длина)5,34м x (Высота)3,3м = 17,62 м2.

Обмер помещение производится по внешней стороне. Если часть стены приходится на угол, то учитывается вся длинна стены. Если стена смежная, то берём половину толщины стены.

Площадь проёма окна: 1,8 х 2,0 = 3,6 м2.

Т.к. нас интересует площадь именно стены, то вычитаем площадь окна: 17,62-3,6=14,02м2.

Площадь восточной стены: 3,1м x 3,3м = 10,23-1,8 = 8,43м2.

Площадь проёма окна: 0,9 х 2,0 = 1,8 м2.

Коэффициенты теплопроводности стен коттеджа высчитываются в зависимости от материалов и толщины стены.

Стен: R=3,29 м2*С/Вт

Коэффициент теплопроводности для пластикового окна примерно равен 0,56 м2*С/Вт, но

с учётом инфильтрации в коттедже на 1 этаже: 0,25 м2*С/Вт.

Есть несколько методов учёта инфильтрации. Но суть общая: добавляется коэффициент, который зависит от разности давления (на это есть таблицы в разных справочниках и учебниках). Мы на работе пробовали считать разными методами. Цифры в итоге получаются примерно одинаковые. В итоге самый быстрый и простой способ – сразу изменить коэффициент теплопроводности окна.

Для г.Чебоксары температура холодной пятидневки -32С.

Температура помещения кухни: +18С.

Если помещение угловое, то температура внутри помещение для расчёта берётся на 2 градуса больше. (+18+2=+20 градусов)

Разница температур: 52С.

Стена выходит на север, появляется добавочный коэффициент +10%.

В помещение 2 наружные стены +5%

14,02*(1/3,29)*52*1,15=254,83 Вт – теплопотери северной стены.

3,6*(1/0,25)*52*1,15=861,12 Вт – теплопотери окна.

8,43*(1/3,29)*52*1,15=153,23 Вт – теплопотери восточной стены.

1,8*(1/0,25)*52*1,15=430,56 Вт – теплопотери окна.

Если в доме нет подвала и/или этот этаж последний – то необходимо добавить ещё и теплопотери через покрытие пола и/или потолка.

Теплопотери пола считаются по зонам, если пол на земле, расскажу об этом позже.

Сейчас у нас простой пример.

Итого: 1699,74Вт – округлим – 1700Вт – теплопотери кухни.

Обычно к расчётам всегда прибавляют 10-20% – на различные неучтённости: 1700*1.1 = 1870Вт.

Теперь необходимо подобрать отопительное оборудование для кухни.

Более подробно о расчёте теплопотерь вы можете узнать в учебниках.

1. Справочник под ред. Староверова. Отопление. Часть 1.

2. Отопление и Вентиляция. Часть 2. Богословский В.Н.

3. Отопление. Богословский В.Н., Сканави А.Н.

Дубликаты не найдены

=Обычно к расчётам всегда прибавляют 10-20% – на различные неучтённости: 1700*1.1 = 1870Вт.

Скромный личный опыт в строительстве подсказывает, что надо добавлять 30%. Причина: несоответствие заявленных характеристик теплоизолирующих материалов. Такая же петрушка и с теплоотдачей радиаторов.

Согласен. Просто при подборе радиаторов отопления стараюсь учесть реальную теплоотдачу + округление в большую сторону.

Коэффициент теплопроводности для пластикового окна примерно равен 0,56 м2*С/Вт, но
с учётом инфильтрации в коттедже на 1 этаже: 0,25 м2*С/Вт.

Не имеют современные окна инфильтрации. Совсем не имеют.

Но этим самым мы как раз и учитываем расход тепла на нагрев воздуха. Либо можно тут не учитывать, а рассчитать отдельно расход тепла на нагрев поступающего воздуха из расчёта 3м3 воздуха на 1м2 комнаты.

А не надо учитывать на окнах. Это какой то кривой метод.

Есть вентиляция её и надо считать.

А давай те сравним итоговые цифры. Сделай те ваш расчёт по исходным данным из поста.

Мне тоже действительно интересно.

Вентиляция кухни 90 м3/час 90*1,2*1005*52=1567 Вт/час. Но раскидывать надо на весь дом с учётом кол проживающих и объёма.

Изолированно не учесть.

Я сейчас подставил для окон коэффициент 0,56 – итоговые теплопотери кухни БЕЗ инфильтрации получились = 985Вт

Прибавляем расход на вентиляцию 1567: 985+1567 = 2552Вт.

Т.е. совместными усилиями получаем такую цифру? И она тоже верная.

Но скажите мне, кто в -32 будет открывать окна и форточки для создания положенной вентиляции. И если уменьшить объём вентиляции в половину – 45м3 – то суммарные затраты:

И вот это более “реально-бытовая” цифра на основе моего опыта.

А если устанавливать приточную установку – тогда механическая вентиляция вообще в расчёте не участвует.

Приточка в любом случае со своим подогревом, не радиаторы же её нагревают.

Но я не инженер-теплотехник

Но скажите мне, кто в -32 будет открывать окна и форточки для создания положенной вентиляции.

А откуда вы возьмёте инфильтрацию через пластиковое окно ?

И если уменьшить объём вентиляции в половину – 45м3

Ну как бы нежелательно для кухни, запахи будут.

Доводы ваши верные и с ними согласен. “Возьму на вооружение”. Цель моих постов как раз отчасти и в том, что бы ОБСУДИТЬ.

Но откуда то воздух для вытяжки берётся 🙂

В большинстве случаев как раз из неучтённой инфильтрации. Но могу заметить, сейчас её явно не хватает для нормальной вентиляции. И приходится делать приточку.

Потери дома это: теплопотери через конструкции + инфильтрация+ всякое разное+вентиляция.

Инфильтрация в большинстве случаев это очень незначительная величина по сравнению с вентиляцией.

Поэтому её в топку, а считать только потери через конструкции+ всякое разное+вентиляция.

Не первый раз замечаю вот такие вещи в расчетах в вводных данных

Температура помещения кухни: +18С

18 градусов в помещении это п. ц дубак, 22 в помещении это комфортная температура для сна под одеялком, а в среднем что называется “уютно” это 24градуса. Конечно все зависит от личных предпочтений и типа отопления, на сколько холодный пол сквозняки там и все такое, но 18.

Коэффициент теплопроводности для пластикового окна примерно равен 0,56 м2*С/Вт

ТС, это не коэффициент теплопроводности.

Коэффициент теплопроводности имеет размерность Вт/(м·K).

В приведённом расчёте ни слова не сказано о зависимости теплопотерь от скорости ветра снаружи (см “роза ветров” и “средняя скорость в течение расчётного периода времени”), а коэффициент теплоотдачи сильно зависит именно что от скорости.

Тоже заметил про коэффициент. Остается добавить только, что в расчете у ТС-а указано термическое сопротивление.

Согласно нормам. Что посчитать необходимый минимум. А так в программе можно менять температуру.

Скажите, эти формулы будут корректно работать при плюсовых температурах? Логика мне подсказывает, что должны, но мало ли, есть подводные камни.

Просто у меня следующая ситуация: Есть гараж, в доме. Он очень плохо утеплен. В нём стоят радиаторы отопления, но их мало. В планах его утеплить, но пока нет денег – предыдущей зимой при -20 на улице в гараже было -3, и-за чего дома было очень холодно на 1 этаже, а в комнатах на 2-м этаже, над гаражом пол был очень холодный. Сейчас у меня стоит задача приколхозить утепление на ворота(главный источник потерь тепла) и добавить источники тепла(электрические). Рассчитать потери заранее не представляется возможным, т.к. очень много неизвестных(вроде пары щелей).

Я хочу заранее знать, хватит ли утеплителя, и сколько кВт нужны обогреватели(чтобы не оказаться зимой с замершей задницей), поэтому хочу утеплить гараж сейчас, поставить в нём 1 обогреватель на 3 кВт на сутки и замерить температуру в гараже, на улице, и в помещениях рядом, таким образом, получив примерную величину R(для всей площади), и уже подставив её же в формулу с температурами для зимнего периода, посчитать требуемую мощность отопления и докупить обогреватели, если надо, и сделать утеплитеь лучше

Ссылка на основную публикацию